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Abstract. General expressions for vector-meson dominated (VMD) form factors of hadrons fulfilling asymp-
totic conditions, derived previously for n vector-meson parameterization of the electromagnetic form factor
of any strongly interacting particle with the asymptotics ∼|t|→∞ t−m (m < n) and form factor normaliza-
tion conditions, are presented. The special case of m = n and the expression fulfilling asymptotic conditions
without any form factor normalization are discussed too.

1 Introduction

Recently, starting with different properties of the electro-
magnetic (EM) form factor (FF) Fh(t) of a strongly inter-
acting particle to be saturated by n vector mesons and pos-
sessing the asymptotic behavior ∼|t|→∞ t−m (m ≤ n), two
dissimilar systems of (m−1) linear homogeneous algebraic
equations for coupling constant ratios of vector mesons to
the hadron under consideration were derived [1]. Though
they really look differently, in [1] it has been demonstrated
explicitly that both systems are exactly equivalent.

In this paper we are concerned with a more simple one,
derived by means of the superconvergent sum rules for the
imaginary part of the EM FF, in which the coefficients
are simply even powers of the corresponding vector-meson
masses. In more detail, we look for general expressions of
VMD form factors Fh(t) with the required asymptotics.

There are three cases appearing in various physical
situations that are interesting, and all of them are discussed
in this paper.

The first one appears in the construction of the unitary
and analytic model of EM structure [2] of any strongly in-
teracting particle with a number of building quarks nq > 2,
when at the first stage one has need for the VMD parame-
terization of the FF under consideration with the required
asymptotics and normalization. The latter is found by a
combination of the (m − 1) asymptotic conditions with
the FF normalization condition and by a general solution
of the obtained m linear algebraic equations for n cou-
pling constant ratios. As a result, the FF depends then on
the (n−m) coupling constant ratios as free parameters of
the model.
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The second case is obtained from the previous one for
m ≡ n and it leads to expressions of all coupling constant
ratios through the vector-meson masses. If the latter are
known, numerical values of the coupling constant ratios are
found, like in [3], for tensor coupling constants of vector
mesons to nucleons.

The third case appears naturally in the determination
of the behavior of the strangeness FF of strongly interact-
ing particles from the isoscalar parts of the corresponding
EM FFs. For instance, the value of the strangeness nucleon
magnetic moment µs is unknown in advance and, thus, the
corresponding strangeness magnetic FF (as a consequence
also the strangeness Pauli FF) model is constructed with-
out the normalization [4]. In order to keep some inner
analytic structure of the corresponding EM form factor
model, one has to construct it also without any normaliza-
tion, though in the electromagnetic case it is exactly known
experimentally to be equal to the magnetic moment of the
nucleon. So in such a situation one has to solve the asymp-
totic conditions in the form of (m−1) linear homogeneous
algebraic equations for n coupling constant ratios. The re-
sultant solutions express the (m − 1) coupling constant
ratios through the other (n − m + 1) ones which are then
free parameters of the model.

More details of the general solutions of asymptotic con-
ditions and their consequences for all three specific cases
can be found in the next section. The last section is devoted
to conclusions and a discussion.

2 General solution of asymptotic conditions

First, we look for a general solution of the asymptotic
conditions to be combined with the FF norm when the FF
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is saturated by more vector-meson resonances than the
power determining the FF asymptotics.

If we assume that the EM FF of any strongly interact-
ing particle is well approximated by a finite number n of
vector-meson exchange tree Feynman diagrams, one finds
the VMD pole parameterization

Fh(t) =
n∑

i=1

m2
i

m2
i − t

(fihh/fi), (1)

where t = −Q2 is the momentum transfer squared of the
virtual photon, mi are the masses of vector mesons, and
fihh and fi are the coupling constants of the vector meson
to the hadron and the vector-meson–photon transition,
respectively. Furthermore, let us assume that the EM FF
in (1) has the asymptotic behavior

Fh(t)|t|→∞ ∼ t−m, (2)

and it is normalized at t = 0 as follows:

Fh(0) = F0. (3)

The requirement for the conditions (3) and (2) to be
satisfied by (1) (including also the results of [1]) leads to
the following system of m linear algebraic equations:

n∑
i=1

ai = F0, (4)

n∑
i=1

m2r
i ai = 0, r = 1, 2, . . . , m − 1,

for the n coupling constant ratios ai = (fihh/fi). There-
fore, a solution of (4) is looked for where the m unknowns
a1, . . . , am and am+1, . . . , an are considered as free param-
eters of the model. Then the system (4) can be rewritten
in the matrix form

Ma = b, (5)

with the m × m Vandermonde matrix M

M =




1 1 . . . 1
m2

1 m2
2 . . . m2

m

m4
1 m4

2 . . . m4
m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m
2(m−1)
1 m

2(m−1)
2 . . . m

2(m−1)
m


 (6)

and the column vectors

a =




a1
a2
a3
...

am


 , b =




F0 − ∑n
k=m+1 ak

− ∑n
k=m+1 m2

kak

− ∑n
k=m+1 m4

kak

. . . . . . . . . . . . . . . . . . . . . .

− ∑n
k=m+1 m

2(m−1)
k ak


 . (7)

Since the Vandermonde determinant of the matrix (6) is
different from zero,

detM =
m∏

j,l=1,
j<l

(m2
l − m2

j ). (8)

by means of Cramer’s rule a non-trivial solution of (5) (for
more details see [5]) is obtained. We have

ai =
F0(−1)1+i

∏m
j=1
j �=i

m2
j

∏m
j,l=1

j<l,j,l �=i
(m2

l − m2
j )∏m

j,l=1
j<l

(m2
l − m2

j )
(9)

−
(−1)i−1 ∏m

j,l=1
j<l,j,l�=i

(m2
l − m2

j )
∑n

k=m+1 ak

∏m
j=1
j �=i

(m2
j − m2

k)
∏m

j,l=1
j<l

(m2
l − m2

j )
.

giving the form factor Fh(t) to be saturated by n-vector
mesons (n > m) in the form suitable for the unitarization

Fh(t) = F0

∏m
j=1 m2

j∏m
j=1(m

2
j − t)

(10)

+
n∑

k=m+1

{
m∑

i=1

m2
k

(m2
k − t)

∏m
j=1
j �=i

m2
j∏m

j=1
j �=i

(m2
j − t)

∏m
j=1
j �=i

(m2
j − m2

k)∏m
j=1
j �=i

(m2
j − m2

i )

−
∏m

j=1 m2
j∏m

j=1(m
2
j − t)

}
ak,

for which the asymptotic behavior (2) and the normaliza-
tion (3) are fulfilled automatically.

Now we consider the case of (4) for n = m. Then it can
also be rewritten into the matrix form (5) with the m×m
Vandermonde matrix (6) and the same column vector a,
but with the b vector of the following form:

b =




F0
0
0
...
0
0




. (11)

The corresponding solutions

ai = F0

(−1)1+i
∏m

j=1
j �=i

m2
j

∏m
j,l=1

j<l,j,l �=i
(m2

l − m2
j )∏m

j,l=1
j<l

(m2
l − m2

j )
(12)

= F0

∏m
j=1
j �=i

m2
j (−1)1+i

∏m
j=1
j �=i

(m2
j − m2

i )(−1)i−1

are again found by means of Cramer’s rule, and they are
completely expressed only through the masses of m vector
mesons, by means of which the considered FF is saturated.

The third case with the (m − 1) linear homogeneous
algebraic equations for n (n > m) coupling constant ratios
without any normalization of the FF appears naturally e.g.
in the determination of the behavior of the strangeness FFs
of strongly interacting particles from the isoscalar parts
of the corresponding EM FFs, as we have mentioned in
the Introduction.
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Then, we have only the equations

n∑
i=1

m2r
i ai = 0, r = 1, 2, . . . m − 1, (13)

which can be rewritten in the matrix form (5) with the
(m − 1) × (m − 1) matrix M

M =




m2
1 m2

2 . . . m2
m−1

m4
1 m4

2 . . . m4
m−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m
2(m−1)
1 m

2(m−1)
2 . . . m

2(m−1)
m−1


 (14)

and the column vectors

a =




a1
a2
a3
...

am−1


 , b =




− ∑n
k=m m2

kak

− ∑n
k=m m4

kak

− ∑n
k=m m6

kak

. . . . . . . . . . . . . . . . . . .

− ∑n
k=m m

2(m−1)
k ak


 . (15)

The determinant of the matrix (14)

detM =
m−1∏
j=1

m2
j

m−1∏
j,l=1
j<l

(m2
l − m2

j ) (16)

is again different from zero, and so a non-trivial solution
of (13) of Cramer’s rule exists in the form

ai = −
n∑

k=m

m2
k

m2
i

∏m−1
j=1
j �=i

(m2
j − m2

k)

∏m−1
j=1
j �=i

(m2
j − m2

i )
ak, i = 1, 2 . . . , m − 1,

(17)
giving the parameterization of the FF

Fh(t) =
n∑

k=m

∏m−1
j=1 (m2

j − m2
k)∏m−1

j=1 m2
j

∏m−1
j=1 m2

j∏m−1
j=1 (m2

j − t)
m2

k

m2
k − t

ak,

(18)
for which the asymptotic behavior (2) is fulfilled automat-
ically.

3 Conclusions

General expressions for the VMD FFs of hadrons fulfill-
ing asymptotic conditions, derived by means of the su-
perconvergent sum rules for the imaginary part of the FF
under consideration, in which coefficients are simply even
powers of the corresponding vector-meson masses, have
been found.

We have distinguished three cases appearing in various
physical situations:
(i) in the construction of unitary and analytic models of
the EM structure of any strongly interacting particle with
a number of building quarks nq > 2, when at the first stage
one has need for the VMD parameterization of the FF to
be saturated with n different vector mesons, but with the
required asymptotics (2) and normalization (3), under the
assumption m < n;
(ii) in the same problem; however, when m = n;
(iii) in a prediction of the behavior of the strangeness form
factors of a strongly interacting particle from the isoscalar
parts of the corresponding electromagnetic form factors.

In the first case, we have found the explicit form (10)
of the EM FF for which the asymptotic behavior (2) and
for t = 0 the normalization (3) are fulfilled automatically.
Such a form is the starting point in a construction of the
unitary and analytic model of EM structure of any strongly
interacting particle, in which a superposition of complex
conjugate pairs vector-meson poles on unphysical sheets
of the four sheeted Riemann surface and continua contri-
butions are considered at the same time.

In the second case, the explicit expressions (12) of all
considered coupling constant ratios are found to be ex-
pressed through the masses of saturated vector mesons
and the norm F0 of the FF. The direct application of (12)
to nucleons [6] gives a surprising coincidence with the val-
ues obtained in a fit [7] of the existing experimental data
by the modified VMD model.

In the third case, the explicit form (18) of the isoscalar
part of the EM FF of the strongly interacting particle was
obtained, by means of which the behavior of the strangeness
magnetic FF can be predicted.
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2. S. Dubnička, Acta Physica Polonica B 27, 2525 (1996)
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